
So, You Want
to Build the Next
Amazing Marketplace?
Top five Payment API must haves
for Payment Facilitators

© 2017 Vantiv, LLC. All rights reserved.

If you’re familiar with Payment Facilitation chances are that you’re already pretty savvy about payments. Payment
Facilitation can be critical in unlocking new business models and enabling growth, but for software developers there are
many issues that complicate application design. Developers need to think about not only processing payments, but deal
with a range of complex issues associated with managing a community of merchants.

As reminder, a Payment Facilitator (or PayFac®) is an entity that acts as an aggregator, providing payment related services
and facilitating transactions for a number of sub-merchants. PayFacs basically sponsor merchants, enabling these sub-
merchants to be boarded with the support of a payment processor and underwriting bank. This arrangement provides
several efficiencies. It simplifies the process of engaging and signing sub-merchant partners, and puts the PayFac more
firmly in control of their business. Instead of your merchants signing up with a third party payment gateway (eroding
your margins and control) they in effect sign up with you, and you facilitate payments for your own community of sub-
merchants. In essence, you become a mini acquirer.

Operating a PayFac at scale depends on efficient management of functions beyond simple processing like boarding,
management, funding, and handling chargebacks. As with most things in software, doing these well demands not only the
right infrastructure, but modern, flexible programming interfaces.

 Boarding & Sub-merchant Vetting

While not as onerous as establishing a merchant account,
whenever you sign a sub-merchant, you and your sponsor
bank of are taking on some level of risk. Few PayFacs can
afford the administrative overhead of processing new sub-
merchant requests manually, so having automation behind
merchant setup & vetting is a first essential requirement.
PayFac management platforms should offer a boarding
API to support streamlined processing and fast approval
of submerchants for underwriting. The boarding API needs
to differentiate between legal entities and individual sub-
merchants attached to those entities (because your sub-
merchant may operate multiple stores for example).

Ideally, the API should allow you to pass key information
about a legal entity (type of business, tax identification
numbers, details on principals, years in business etc.)
and receive information back. Is the business legit? Is the
address valid? Are outstanding liens? Are there criminal
records or a history of bankruptcies? Depending on your
business, you’d like to have the option of performing
background checks with different levels or thoroughness.
In cases where sufficient information cannot be verified
electronically, you’d like your payment processor to
undertake a manual review on your behalf and notify you
electronically of the results so that you receive either
an approval or a clear explanation of why a particular
application cannot be approved.

LEARN MORE

http://info.vantiv.com/payfac-pf

© 2017 Vantiv, LLC. All rights reserved.

Once legal entities are approved, you should be able
to easily manage and maintain details about individual
sub-merchants including banking information, approved
transaction limits and the like. To operate as a PayFac you
will have registered with the card brands in their respective
programs, so the API for boarding sub-merchants should
automatically provide notifications as you add or retire
sub-merchants.

 Transaction Tagging

This will be obvious to most developers, but once
you board a merchant, you’ll need to be able to tag
transactions like Authorizations, Captures and Reversals
to the appropriate merchant in your code. This requires
that your transaction-oriented APIs be PayFac aware as
well. Your business might involve a partner branded web
presence or a mobile app that end customers download
from Apple’s AppStore or Google Play. You’re clearly not
going to build separate apps or infrastructure for each
sub-merchant, rather you’ll parameterize your code to deal
with multiple sub-merchants. Ideally, this transaction-level
tagging should be flexible enough to allow for additional
metadata like campaign identifiers, affiliates, or other
information useful for downstream reporting. As your
business grows, you might provide financial incentives to
your merchants by paying them differentially based on
their performance around specific marketing campaigns or
programs. It’s essential that your transaction level APIs and
reporting systems support this kind of flexibility.

 Chargeback Management

Chargebacks are a headache for any merchant, so imagine
the challenge when handling hundreds or perhaps
even thousands of sub-merchants. This is another
case where the scale of the challenge simply demands
a comprehensive API. While some chargebacks are
legitimate (stolen cards, disputes, fraud and the like), other
chargebacks are the result of customer error and can be
reversed by simply following the chargeback process
prescribed by the card networks.

Similar to onboarding, to be effective the chargeback
management API needs to automate the process fully,
avoiding costly and time-consuming manual steps on
the part of the PayFac. The API needs to not only allow
tracking of chargeback activity by sub-merchant, but it
needs to accommodate the variance of rules and policies
associated each card brand. For example in the case of
a dispute involving MasterCard, the decision of whether
to go to arbitration is made by a merchant whereas
with VISA, the decision resides with the card issuer. A
chargeback management APIs should automate tracking
and interactions through all phases including retrieval
requests, chargeback initiation and pre-arbitration or
arbitration. It should also provide programmatic interfaces
for common tasks like assigning chargebacks to the correct
sub-merchant, allowing sub-merchants to assume liability
when appropriate, adding notes, and providing requested
documentation via the direct upload of binary files to
support a case.

With a proper chargeback management API, PayFac
application designers can build chargeback management
features directly into the custom interfaces that they
present to their sub-merchants. They can better manage
risk (by identifying frequent sources of chargebacks),
avoid unnecessary charges, and maximize revenue and
pofitability both for sub-merchants and themselves.

 Merchant Funding

The whole point of a sub-merchant signing up to your
service is to get paid, so doing a good job in this area is
essential. Small PayFacs may be able to manage paying
sub-merchants themselves, but at any scale, automation
via APIs becomes essential in this area as well. PayFacs
should have access to APIs that allow them to provide
precise funding instructions, easily moving money to sub-
merchant accounts, various holding accounts and to their
own accounts as well.

By utilizing an API rather than web-based tools that
providers might offer to track, fund and report on
merchants, developers have the flexibility and control
needed to devise creative new business models. For
example they might levy particular fees for different

NUMBER
© 2017 Vantiv, LLC. All rights reserved.

types of services, or offer their sub-merchants incentives
or compensation based on tiered revenue attainment
structures. They might want to offer flexibility to sub-
merchants like the ability to perform deposits across multiple
bank accounts to make their offering more attractive to
partners. PayFacs can also precisely control the schedule for
funding, and can consciously withhold payments for contract
or risk related reasons with the right APIs.

While a PayFac may not need all this flexibility out of the
gate, as revenue grows and business models mature, flexible
funding APIs help ensure that systems don’t get in the way
of delivering new capabilities that can provide a source of
competitive advantage.

 OmniChannel Transaction Support

The way that consumers make payments is changing fast,
with mobile payments, digital wallets and other forms of
stored credentials becoming increasingly important. A
PayFac might start out accepting credit cards on a mobile-
optimized web-site but this storefront might be quickly
augmented with a downloadable mobile app, or even retail
locations requiring card present solutions. Similarly, the types
of payments accepted might expand.

The payment APIs provided for handling sub-merchant
transactions need to be flexible and support a variety of
card-present and card-not-present payment methods. The
last thing a PayFac developer needs are separate sets of
transactional APIs for each method of payment or mobile
wallet the incorporate adding complexity to their design
and complicating downstream maintenance. Ideally a
customer who makes a purchase using one channel should
be recognizable in future when they purchase via a separate
channel.

 Security & Fraud tools

Last but certainly not least are features related to
security and fraud. While all developers need to design
for security, this is an especially big issue for PayFacs. A
single security incident can impact your brand and make
all your sub-merchants skittish. Developers need proven
APIs that can help them avoid storing or transmitting
cardholder data to reduce PCI scope and ensure that they
and their merchants are secure. As mobile wallets become
more popular, developers would ideally like to pass mobile
payment credentials directly to their processor, tagged
to the appropriate sub-merchant and leave it to the
payment processor to worry about details like decrypting
tokens and vaulting payment credentials for future use.
Rather than relying on fraud scoring mechanisms that are
implemented globally and apply to all merchants, PayFac
developers need the flexibility to tailor policies individually
by sub-merchant, and even allow sub-merchants to tailor
these policies themselves at the PayFac’s discretion. This
calls for granular API level features whereby developers
can request additional “telemetry” with each transaction
so that fraud-related metrics can be compared with
acceptable thresholds configurable (within reason) on a
per sub-merchant basis. By providing sub-merchants with
these kinds of capabilities, not only are transactions made
more secure, but integrations are simplified and PayFacs
can provide value-added features in their software that
help differentiate them from competitors.

Vantiv PayFac meets you on the road when building a payments platform. We continue to build, define and
reinvent the rules of payment facilitation in partnership with the card brands. To learn about Vantiv’s PayFac
specific APIs and access our technical documentation, visit our developer community built for PayFacs at
https://developer.vantiv.com/community/payfacs

https://developer.vantiv.com/community/payfacs

